We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Diet

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Glycolysis?

Karyn Maier
By
Updated: Mar 03, 2024
Views: 66,332
Share

Glycolysis is a complex biological process that occurs to convert glucose into pyruvate in order to provide energy for each living cell. Since the glycolysis cycle involves the conversion of blood sugar into an anion of pyruvic acid (pyruvate), glycolysis is also referred to as the citric acid cycle.

Since this event also involves the release of free energy, it is considered to be a thermodynamic reaction. The end result is the synthesis of adenosine-5'-triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH), two nucleotides that are key components of DNA and important for proper metabolic functioning. While glycolysis is a simple example of anaerobic cellular respiration and fermentation, there are ten reactive steps to occur that involve several catalyst enzymes and intermediate compounds.

The first event to occur in glycolysis uses energy provided by hexokinase glycolysis enzymes to convert a sugar (glucose) molecule with six carbon atoms into two compounds containing three carbon atoms, or glucose 6-phosphate. This substance then undergoes molecular rearrangement to “lactate,” or produce an anion of lactic acid. The “pay back” for energy consumption in the early phase of glycolysis is the subsequent production of two nicotinamide adenine dinucleotides (NADs), followed by a phosphate group binding to each 3-carbon molecule, which generates 1,3-bisphosphoglycerate. Meanwhile, the hydrogen in the reaction is used to reduce NAD, yielding NADH. Finally, the glycolysis enzyme pyruvate kinase is used to produce two ATPs for each glucose molecule involved in the glycolytic reaction.

Glycolysis is a basic metabolic pathway that likely evolved billions of years ago. However, while it occurs in nearly every living organism, it does so with variation. For example, although glucose is the usual springboard to launch glycolysis, other monosacharides may be brought into the reaction. In addition, lactate is not the only possible by-product of glycolysis, as evidenced by the manufacture of carbon dioxide and ethanol when brewers yeast undergoes fermentation. Finally, not all carbon is necessarily converted to pyruvate and may be used to further other carbon-related pathways.

Dysfunctional glycolysis also occurs. For instance, cancer cells often exhibit a glycolytic cycle up to 200 times higher than the rate of normal cells. Known as the Warburg effect, this acceleration may happen due to an abundance of hexokinase enzymes, or a deficiency of oxygen from a lack of blood flow to the site. A similar disturbance in glucose metabolism is seen in Alzheimer’s disease. However, this is more likely caused by an accumulation of specific proteins that interfere with phosphorylation.

Share
The Health Board is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Karyn Maier
By Karyn Maier
Contributing articles to The Health Board is just one of Karyn Maier's many professional pursuits. Based in New York's Catskill Mountain region, Karyn is also a magazine writer, columnist, and author of four books. She specializes in topics related to green living and botanical medicine, drawing from her extensive knowledge to create informative and engaging content for readers.
Discussion Comments
By anon950021 — On May 08, 2014

hello my name is dubby, i am of 18 year of oldness. diabetes is fun.

By anon294484 — On Oct 01, 2012

@chrisatl8: When one is diagnosed with diabetes, his/her cells are still perfectly capable of metabolizing glucose molecules. My understanding of diabetes is that the body cannot recognize glucose in the bloodstream (the reason depending on the type of diabetes). When blood sugar levels are high, the pancreas normally secretes insulin, which allows the glucose to exit the bloodstream and enter the cells. Your friend may not be creating insulin at all (or too little of it, as in type I), or perhaps the insulin created is not recognized by the body (which can occur upon frequent insulin releases, in the case of type II). Perhaps that will help?

Your friend should stay away from foods which are high in simple sugars, which do not need to be metabolized by enzymes (hydrolysis reactions) to be consumed by cells. Complex sugars which are linked together in polysaccharides are broken down over time, keeping blood sugar levels from dramatically spiking.

By chrisatl8 — On Jun 15, 2011

How is glutose metabolism affected by diabetes? My friend was recently diagnosed, and we're still in the process of figuring out what foods she needs to stay away from.

Karyn Maier
Karyn Maier
Contributing articles to The Health Board is just one of Karyn Maier's many professional pursuits. Based in New York's...
Learn more
Share
https://www.thehealthboard.com/what-is-glycolysis.htm
Copy this link
The Health Board, in your inbox

Our latest articles, guides, and more, delivered daily.

The Health Board, in your inbox

Our latest articles, guides, and more, delivered daily.